TY - JOUR
T1 - Influence of Late Paleozoic Gondwana glaciations on the depositional evolution of the northern Pangean shelf, North Greenland, Svalbard and the Barents Sea
AU - Stemmerik, Lars
PY - 2008
Y1 - 2008
N2 - Outcrop and subsurface data from the central northern margin of the Pangean shelf in North Greenland, Svalbard, and the Norwegian Barents Sea record the depositional response of a Northern Hemisphere subtropical shelf to Late Carboniferous-Early Permian (Bashkirian-Sakmarian) Gondwana glaciations. The dominant motif is that of meters to tens of meters of exposure-capped cycles of carbonates, mixed carbonates, and siliciclastics and, in older stratigraphic levels, siliciclastics and gypsum. Halitegypsum-carbonate cycles developed in deeper, isolated basins. Individual cycles of carbonate and mixed carbonate-siliciclastics reflect deposition during the later stages of transgression, sea-level highstands, and high-frequency and high-amplitude glacioeustatic sea-level fluctuations. The Moscovian sections in North Greenland are composed of 43 such cycles, each of which apparently reflects sealevel fluctuations linked to the 100 k.y. Milankovitch cycle. The stratigraphic distribution of subaerial exposure surfaces indicates that during Late Carboniferous-Early Permian time, the northern Pangea shelf repeatedly changed from being a shallow subtropical carbonate platform to a vast subaerially exposed carbonate plain, and it implies sea-level amplitudes in excess of 50 m. A major Gondwana deglaciation event is recorded in early Sakmarian shelf successions offshore northern Norway, where rapid flooding led to sediment starvation over an extended period of time, and when sedimentation finally resumed, the cyclic motif is absent.
AB - Outcrop and subsurface data from the central northern margin of the Pangean shelf in North Greenland, Svalbard, and the Norwegian Barents Sea record the depositional response of a Northern Hemisphere subtropical shelf to Late Carboniferous-Early Permian (Bashkirian-Sakmarian) Gondwana glaciations. The dominant motif is that of meters to tens of meters of exposure-capped cycles of carbonates, mixed carbonates, and siliciclastics and, in older stratigraphic levels, siliciclastics and gypsum. Halitegypsum-carbonate cycles developed in deeper, isolated basins. Individual cycles of carbonate and mixed carbonate-siliciclastics reflect deposition during the later stages of transgression, sea-level highstands, and high-frequency and high-amplitude glacioeustatic sea-level fluctuations. The Moscovian sections in North Greenland are composed of 43 such cycles, each of which apparently reflects sealevel fluctuations linked to the 100 k.y. Milankovitch cycle. The stratigraphic distribution of subaerial exposure surfaces indicates that during Late Carboniferous-Early Permian time, the northern Pangea shelf repeatedly changed from being a shallow subtropical carbonate platform to a vast subaerially exposed carbonate plain, and it implies sea-level amplitudes in excess of 50 m. A major Gondwana deglaciation event is recorded in early Sakmarian shelf successions offshore northern Norway, where rapid flooding led to sediment starvation over an extended period of time, and when sedimentation finally resumed, the cyclic motif is absent.
KW - Faculty of Science
KW - Gondwana
KW - nord grønland
KW - Swalbard
KW - late palezoic Gondwana glaciations
KW - Gondwana
KW - Pangean shelf
KW - North Grenland
KW - Swalbard
U2 - 10.1130/2008.2441(14)
DO - 10.1130/2008.2441(14)
M3 - Journal article
SN - 0072-1077
VL - 441
SP - 205
EP - 217
JO - Special Paper of the Geological Society of America
JF - Special Paper of the Geological Society of America
ER -