Horizontal dimensionality reduction and iterated frame bundle development

17 Citationer (Scopus)

Abstract

In Euclidean vector spaces, dimensionality reduction can be centered at the data mean. In contrast, distances do not split into orthogonal components and centered analysis distorts inter-point distances in the presence of curvature. In this paper, we define a dimensionality reduction procedure for data in Riemannian manifolds that moves the analysis from a center point to local distance measurements. Horizontal component analysis measures distances relative to lower-order horizontal components providing a natural view of data generated by multimodal distributions and stochastic processes. We parametrize the non-local, low-dimensional subspaces by iterated horizontal development, a constructive procedure that generalizes both geodesic subspaces and polynomial subspaces to Riemannian manifolds. The paper gives examples of how low-dimensional horizontal components successfully approximate multimodal distributions.

OriginalsprogEngelsk
TitelGeometric Science of Information : First International Conference, GSI 2013, Paris, France, August 28-30, 2013. Proceedings
RedaktørerFrank Nielsen, Frédéric Barbaresco
Antal sider8
ForlagSpringer
Publikationsdato2013
Sider76-83
ISBN (Trykt)978-3-642-40019-3
ISBN (Elektronisk)978-3-642-40020-9
DOI
StatusUdgivet - 2013
BegivenhedFirst International Conference on Geometric Science of Information - Paris, Frankrig
Varighed: 28 aug. 201330 aug. 2013
Konferencens nummer: 1

Konference

KonferenceFirst International Conference on Geometric Science of Information
Nummer1
Land/OmrådeFrankrig
ByParis
Periode28/08/201330/08/2013
NavnLecture notes in computer science
Vol/bind8085
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Horizontal dimensionality reduction and iterated frame bundle development'. Sammen danner de et unikt fingeraftryk.

Citationsformater