Abstract
In Euclidean vector spaces, dimensionality reduction can be centered at the data mean. In contrast, distances do not split into orthogonal components and centered analysis distorts inter-point distances in the presence of curvature. In this paper, we define a dimensionality reduction procedure for data in Riemannian manifolds that moves the analysis from a center point to local distance measurements. Horizontal component analysis measures distances relative to lower-order horizontal components providing a natural view of data generated by multimodal distributions and stochastic processes. We parametrize the non-local, low-dimensional subspaces by iterated horizontal development, a constructive procedure that generalizes both geodesic subspaces and polynomial subspaces to Riemannian manifolds. The paper gives examples of how low-dimensional horizontal components successfully approximate multimodal distributions.
Originalsprog | Engelsk |
---|---|
Titel | Geometric Science of Information : First International Conference, GSI 2013, Paris, France, August 28-30, 2013. Proceedings |
Redaktører | Frank Nielsen, Frédéric Barbaresco |
Antal sider | 8 |
Forlag | Springer |
Publikationsdato | 2013 |
Sider | 76-83 |
ISBN (Trykt) | 978-3-642-40019-3 |
ISBN (Elektronisk) | 978-3-642-40020-9 |
DOI | |
Status | Udgivet - 2013 |
Begivenhed | First International Conference on Geometric Science of Information - Paris, Frankrig Varighed: 28 aug. 2013 → 30 aug. 2013 Konferencens nummer: 1 |
Konference
Konference | First International Conference on Geometric Science of Information |
---|---|
Nummer | 1 |
Land/Område | Frankrig |
By | Paris |
Periode | 28/08/2013 → 30/08/2013 |
Navn | Lecture notes in computer science |
---|---|
Vol/bind | 8085 |
ISSN | 0302-9743 |