Abstract
In our previous articles [27] and [28] we studied Fourier series on a symmetric space M = U/K of the compact type. In particular, we proved a Paley-Wiener type theorem for the smooth functions on M, which have sufficiently small support and are K-invariant, respectively K-finite. In this article we extend these results to K-invariant distributions onM.We show that the Fourier transform of a distribution, which is supported in a sufficiently small ball around the base point, extends to a holomorphic function of exponential type. We describe the image of the Fourier transform in the space of holomorphic functions. Finally, we characterize the singular support of a distribution in terms of its Fourier transform, and we use the Paley-Wiener theorem to characterize the distributions of small support, which are in the range of a given invariant differential operator. The extension from symmetric spaces of compact type to all compact symmetric spaces is sketched in an appendix.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Mathematica Scandinavica |
Vol/bind | 109 |
Udgave nummer | 1 |
Sider (fra-til) | 93-113 |
ISSN | 0025-5521 |
Status | Udgivet - 2011 |