TY - JOUR
T1 - Effects of ageing on single muscle fibre contractile function following short-term immobilisation
AU - Hvid, Lars G
AU - Ortenblad, Niels
AU - Aagaard, Per
AU - Kjaer, Michael
AU - Suetta, Charlotte
PY - 2011/10
Y1 - 2011/10
N2 - Very little attention has been given to the combined effects of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile properties of single muscle fibres (n= 378) from vastus lateralis of nine young (24 ± 1 years) and eight old (67 ± 2 years) healthy men with comparable levels of physical activity. Prior to immobilisation, MHC IIa fibres produced higher maximum Ca 2+-activated force (approx. 32%) and specific force (approx. 33%) and had lower Ca 2+ sensitivity than MHC I fibres (P < 0.05), with no differences between young and old. After immobilisation, the decline in single fibre force (MHC I: young 21% and old 22%; MHC IIa: young 22% and old 30%; P < 0.05) as well as specific force (MHC I: young 14% and old 13%; MHC IIa: young 18% and old 25%; P < 0.05) was more pronounced in MHC IIa fibres compared to MHC I fibres (P < 0.05), with no differences between young and old. Notably, there was a selective decrease in Ca 2+ sensitivity in MHC IIa fibres of young (P < 0.05) and in MHC I fibres of old individuals (P < 0.05), respectively. In conclusion, 2 weeks of lower limb immobilisation caused greater impairments in single muscle fibre force and specific force in MHC IIa than MHC I fibres independently of age. In contrast, immobilisation-induced changes in Ca 2+ sensitivity that were dependent on age and MHC isoform.
AB - Very little attention has been given to the combined effects of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile properties of single muscle fibres (n= 378) from vastus lateralis of nine young (24 ± 1 years) and eight old (67 ± 2 years) healthy men with comparable levels of physical activity. Prior to immobilisation, MHC IIa fibres produced higher maximum Ca 2+-activated force (approx. 32%) and specific force (approx. 33%) and had lower Ca 2+ sensitivity than MHC I fibres (P < 0.05), with no differences between young and old. After immobilisation, the decline in single fibre force (MHC I: young 21% and old 22%; MHC IIa: young 22% and old 30%; P < 0.05) as well as specific force (MHC I: young 14% and old 13%; MHC IIa: young 18% and old 25%; P < 0.05) was more pronounced in MHC IIa fibres compared to MHC I fibres (P < 0.05), with no differences between young and old. Notably, there was a selective decrease in Ca 2+ sensitivity in MHC IIa fibres of young (P < 0.05) and in MHC I fibres of old individuals (P < 0.05), respectively. In conclusion, 2 weeks of lower limb immobilisation caused greater impairments in single muscle fibre force and specific force in MHC IIa than MHC I fibres independently of age. In contrast, immobilisation-induced changes in Ca 2+ sensitivity that were dependent on age and MHC isoform.
U2 - 10.1113/jphysiol.2011.215434
DO - 10.1113/jphysiol.2011.215434
M3 - Journal article
SN - 0022-3751
VL - 589
SP - 4745
EP - 4757
JO - The Journal of Physiology
JF - The Journal of Physiology
IS - Pt 19
ER -