Deep-time evidence of a link between elevated CO2 concentrations and perturbations in the hydrological cycle via drop in plant transpiration

Margret Steinthorsdottir, F. Ian Woodward, Finn Surlyk, Jennifer C. McElwain

40 Citationer (Scopus)

Abstract

The physiological effects of high CO 2 concentrations, i.e., [CO 2], on plant stomatal responses may be of major importance in understanding the consequences of climate change, by causing increases in runoff through suppression of plant transpiration. Radiative forcing by high [CO 2] has been the main consideration in models of global change to the exclusion of plant physiological forcing, but this potentially underestimates the effects on the hydrological cycle, and the consequences for ecosystems. We tested the physiological responses of fossil plants from the Triassic-Jurassic boundary transition (Tr-J) succession of East Greenland. This interval marks a major high CO 2-driven environmental upheaval, with faunal mass extinctions and significant floral turnover. Our results show that both stomatal size (expressed in fossil material as SL, the length of the stomatal complex opening) and stomatal density (SD, the number of stomata per mm 2) decreased significantly during the Tr-J. We estimate, using a leaf gas-exchange model, that the decreases in SD and SL resulted in a 50%-60% drop in stomatal and canopy transpiration at the Tr-J. We also present new field evidence indicating simultaneous increases in runoff and erosion rates. We propose that the consequences of sto- matal responses to elevated [CO 2] may lead to locally increased runoff and erosion, and may link terrestrial and marine biodiversity loss via the hydrological cycle.

OriginalsprogEngelsk
TidsskriftGeology
Vol/bind40
Udgave nummer9
Sider (fra-til)815-818
Antal sider4
ISSN0091-7613
DOI
StatusUdgivet - sep. 2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'Deep-time evidence of a link between elevated CO2 concentrations and perturbations in the hydrological cycle via drop in plant transpiration'. Sammen danner de et unikt fingeraftryk.

Citationsformater