Asymptotic expansions for the Gaussian unitary ensemble

Uffe Haagerup, Steen Thorbjørnsen

19 Citationer (Scopus)

Abstract

Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian Unitary Ensemble (GUE). Using an analytical approach, we provide in the present paper an alternative proof of this asymptotic expansion in the GUE case. Specifically we derive for a random matrix Xn that

where k is an arbitrary positive integer. Considered as mappings of g, we determine the coefficients aj(g), j ¿ N, as distributions (in the sense of L. Schwarts). We derive a similar asymptotic expansion for the covariance Cov{Trn[f(Xn)], Trn[g(Xn)]}, where f is a function of the same kind as g, and Trn = n trn. Special focus is drawn to the case where and for ¿, µ in C\R. In this case the mean and covariance considered above correspond to, respectively, the one- and two-dimensional Cauchy (or Stieltjes) transform of the .
OriginalsprogEngelsk
TidsskriftInfinite Dimensional Analysis, Quantum Probability and Related Topics
Vol/bind15
Sider (fra-til)1250003
Antal sider41
ISSN0219-0257
StatusUdgivet - mar. 2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'Asymptotic expansions for the Gaussian unitary ensemble'. Sammen danner de et unikt fingeraftryk.

Citationsformater