Arcsecond resolution images of the chemical structure of the low-mass protostar IRAS 16293-2422: an overview of a large molecular line survey from the Submillimeter Array

Jes Kristian Jørgensen, Tyler L. Bourke, Quang Nguyen Luong, Shigehisa Takakuwa

65 Citationer (Scopus)
43 Downloads (Pure)

Abstract

It remains a key challenge to establish the molecular content of different components of low-mass protostars, like their envelopes and disks, and how this depends on the evolutionary stage and/or environment of the young stars. Observations at submillimeter wavelengths provide a direct possibility to study the chemical composition of low-mass protostars through transitions probing temperatures up to a few hundred K in the gas surrounding these sources. This paper presents a large molecular line survey of the deeply embedded protostellar binary IRAS 16293-2422 from the Submillimeter Array (SMA)-including images of individual lines down to ≈ 1.5-3″ (190-380 AU) resolution. More than 500 individual transitions are identified related to 54 molecular species (including isotopologues) probing temperatures up to about 550 K. Strong chemical differences are found between the two components in the protostellar system with a separation between, in particular, the sulfur-and nitrogen-bearing species and oxygen-bearing complex organics. The action of protostellar outflow on the ambient envelope material is seen in images of CO and SiO and appear to influence a number of other species, including (deuterated) water, HDO. The effects of cold gas-phase chemistry is directly imaged through maps of CO, N2D+ and DCO+, showing enhancements of first DCO+ and subsequently N2D+ in the outer envelope where CO freezes-out on dust grains.

OriginalsprogEngelsk
TidsskriftAstronomy & Astrophysics
Vol/bind534
Sider (fra-til)A100
Antal sider28
ISSN0004-6361
DOI
StatusUdgivet - 1 okt. 2011

Fingeraftryk

Dyk ned i forskningsemnerne om 'Arcsecond resolution images of the chemical structure of the low-mass protostar IRAS 16293-2422: an overview of a large molecular line survey from the Submillimeter Array'. Sammen danner de et unikt fingeraftryk.

Citationsformater