TY - JOUR
T1 - Antitumorigenic effect of proteasome inhibitors on insulinoma cells.
AU - Størling, Joachim
AU - Allaman-Pillet, Nathalie
AU - Karlsen, Allan E
AU - Billestrup, Nils
AU - Bonny, Christophe
AU - Mandrup-Poulsen, Thomas
N1 - Keywords: Acetylcysteine; Adaptor Proteins, Signal Transducing; Animals; Antineoplastic Agents; Apoptosis; Binding Sites; Cell Line, Tumor; Cysteine Proteinase Inhibitors; Insulinoma; JNK Mitogen-Activated Protein Kinases; Leupeptins; Mice; Pancreatic Neoplasms; Proteasome Endopeptidase Complex; Rats; Signal Transduction; Tumor Suppressor Protein p53
PY - 2004
Y1 - 2004
N2 - Malignant insulinoma is a critical cancer form with a poor prognosis. Because cure by surgery is infrequent, effective chemotherapy is in demand. Induction of cell death in tumor cells by proteasome inhibitors is emerging as a potential strategy in cancer therapy. Here we investigated whether inhibition of the proteasome has an antitumorigenic potential in insulinoma cells. Exposure of mouse betaTC3 insulinoma cells to the proteasome inhibitor N-Acetyl-Leu-Leu-Nle-CHO (ALLN) reduced cell viability, activated caspase-3, induced apoptosis, and suppressed insulin release. Treatment with ALLN also resulted in phosphorylation of c-jun N-terminal kinase (JNK) and an increase in in vitro phosphorylation of c-jun. In insulinoma cells with impaired JNK signaling, ALLN-induced apoptosis was significantly suppressed. Another proteasome inhibitor, lactacystin, also stimulated JNK activation, caused activation of caspase-3, suppressed cell viability, and induced apoptosis in betaTC3 and rat INS-1E cells. Both ALLN and lactacystin caused a marked decrease in the cellular amount of the JNK scaffold protein JNK-interacting protein 1/islet-brain-1. In primary pancreatic rat islet cells, proteasome inhibition reduced insulin secretion but had no impact on cell viability and even partially protected against the toxic effect of proinflammatory cytokines. Our findings demonstrate that proteasome inhibitors possess antitumorigenic and antiinsulinogenic effects on insulinoma cells.
AB - Malignant insulinoma is a critical cancer form with a poor prognosis. Because cure by surgery is infrequent, effective chemotherapy is in demand. Induction of cell death in tumor cells by proteasome inhibitors is emerging as a potential strategy in cancer therapy. Here we investigated whether inhibition of the proteasome has an antitumorigenic potential in insulinoma cells. Exposure of mouse betaTC3 insulinoma cells to the proteasome inhibitor N-Acetyl-Leu-Leu-Nle-CHO (ALLN) reduced cell viability, activated caspase-3, induced apoptosis, and suppressed insulin release. Treatment with ALLN also resulted in phosphorylation of c-jun N-terminal kinase (JNK) and an increase in in vitro phosphorylation of c-jun. In insulinoma cells with impaired JNK signaling, ALLN-induced apoptosis was significantly suppressed. Another proteasome inhibitor, lactacystin, also stimulated JNK activation, caused activation of caspase-3, suppressed cell viability, and induced apoptosis in betaTC3 and rat INS-1E cells. Both ALLN and lactacystin caused a marked decrease in the cellular amount of the JNK scaffold protein JNK-interacting protein 1/islet-brain-1. In primary pancreatic rat islet cells, proteasome inhibition reduced insulin secretion but had no impact on cell viability and even partially protected against the toxic effect of proinflammatory cytokines. Our findings demonstrate that proteasome inhibitors possess antitumorigenic and antiinsulinogenic effects on insulinoma cells.
U2 - 10.1210/en.2004-0963
DO - 10.1210/en.2004-0963
M3 - Journal article
C2 - 15618349
SN - 0013-7227
VL - 146
SP - 1718
EP - 1726
JO - Journal of Clinical Endocrinology and Metabolism
JF - Journal of Clinical Endocrinology and Metabolism
IS - 4
ER -