Abstract
For every moderate growth representation (p,E)(p,E) of a real Lie group G on a Fréchet space, we prove a factorization theorem of Dixmier–Malliavin type for the space of analytic vectors E¿E¿. There exists a natural algebra of superexponentially decreasing analytic functions A(G)A(G), such that E¿=¿(A(G))E¿E¿=¿(A(G))E¿. As a corollary we obtain that E¿E¿ coincides with the space of analytic vectors for the Laplace–Beltrami operator on G.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Functional Analysis |
Vol/bind | 262 |
Udgave nummer | 2 |
Sider (fra-til) | 667-681 |
ISSN | 0022-1236 |
DOI | |
Status | Udgivet - 15 jan. 2012 |