TY - JOUR
T1 - AI-2 signalling is induced by acidic shock in probiotic strains of Lactobacillus spp.
AU - Moslehi Jenabian, Saloomeh
AU - Gori, Klaus
AU - Jespersen, Lene
PY - 2009
Y1 - 2009
N2 - Survival and ability to respond to various environmental stresses such as low pH are important factors for lactobacilli for their function as probiotics. LuxS-mediated quorum sensing mechanism, which is based on the production of universal signal molecule called autoinducer-2 (AI-2), regulates important physiological traits and a variety of adaptive processes in different bacteria. The aim of this study was to investigate the effect of acidic stress on LuxS-mediated quorum sensing (AI-2 signalling) in four probiotic strains of different Lactobacillus species. Initially, the production of AI-2-like molecule was investigated in four strains of Lactobacillus spp. at standard growth conditions using Vibrio harveyi bioluminescence assay. Species variation in AI-2 activity was observed. AI-2 activity started at early-exponential growth phase and increased during the mid-exponential phase concomitant with the reduction of pH, reaching maximum at late exponential phase (L. rhamnosus GG) or at stationary phase (L. salivarius UCC118, L. acidophilus NCFM and L. johnsonii NCC533). Acidic shock experiments were conducted on L. rhamnosus GG and L. acidophilus NCFM after exposure to different acidic shocks (pH 5.0, 4.0 and 3.0) and to pH 6.5 as control, measuring AI-2 activity and transcription of the luxS gene. AI-2 activity increased by lowering the pH in a dose dependent manner and was negatively influenced by acid adaptation. In both species, the luxS gene was repressed after exposure to pH 6.5 as control. However, after acidic shock (pH 4.0) a transient response of luxS gene was observed and the transcription augmented over time, reaching a maximum level and decreased subsequently. Acid adaptation of cells attenuated the transcription of this gene. Based on the observations done in the present study, the luxS gene appears to have a clear role in acidic stress response in probiotic lactobacilli. This might be important in the survival of these bacteria during the passage through the gastrointestinal tract, and further influence the cell-to-cell communication among bacteria in the intestinal microbiota.
AB - Survival and ability to respond to various environmental stresses such as low pH are important factors for lactobacilli for their function as probiotics. LuxS-mediated quorum sensing mechanism, which is based on the production of universal signal molecule called autoinducer-2 (AI-2), regulates important physiological traits and a variety of adaptive processes in different bacteria. The aim of this study was to investigate the effect of acidic stress on LuxS-mediated quorum sensing (AI-2 signalling) in four probiotic strains of different Lactobacillus species. Initially, the production of AI-2-like molecule was investigated in four strains of Lactobacillus spp. at standard growth conditions using Vibrio harveyi bioluminescence assay. Species variation in AI-2 activity was observed. AI-2 activity started at early-exponential growth phase and increased during the mid-exponential phase concomitant with the reduction of pH, reaching maximum at late exponential phase (L. rhamnosus GG) or at stationary phase (L. salivarius UCC118, L. acidophilus NCFM and L. johnsonii NCC533). Acidic shock experiments were conducted on L. rhamnosus GG and L. acidophilus NCFM after exposure to different acidic shocks (pH 5.0, 4.0 and 3.0) and to pH 6.5 as control, measuring AI-2 activity and transcription of the luxS gene. AI-2 activity increased by lowering the pH in a dose dependent manner and was negatively influenced by acid adaptation. In both species, the luxS gene was repressed after exposure to pH 6.5 as control. However, after acidic shock (pH 4.0) a transient response of luxS gene was observed and the transcription augmented over time, reaching a maximum level and decreased subsequently. Acid adaptation of cells attenuated the transcription of this gene. Based on the observations done in the present study, the luxS gene appears to have a clear role in acidic stress response in probiotic lactobacilli. This might be important in the survival of these bacteria during the passage through the gastrointestinal tract, and further influence the cell-to-cell communication among bacteria in the intestinal microbiota.
U2 - 10.1016/j.ijfoodmicro.2009.08.011
DO - 10.1016/j.ijfoodmicro.2009.08.011
M3 - Journal article
C2 - 19748697
SN - 0168-1605
VL - 135
SP - 295
EP - 302
JO - International Journal of Food Microbiology
JF - International Journal of Food Microbiology
IS - 3
ER -