Abstract
We show that Fa(x) =ln Γ(x + 1)/x ln(ax) can be considered as a Pick function when a ≥ 1, i.e. extends to a holomorphic function mapping the upper half-plane into itself. We also consider the function f(x) =(πx/2/Γ(1 + x/2))1/(x ln x) and show that ln f(x+1) is a Stieltjes function and that f(x+1) is completely monotonic on ]0,∞[. In particular, f(n) = Ω1/(n ln n)n , n ≥ 2, is a Hausdorff moment sequence. Here Ωn is the volume of the unit ball in Euclidean n-space.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Proceedings of the American Mathematical Society |
Vol/bind | 139 |
Udgave nummer | 6 |
Sider (fra-til) | 2121-2132 |
Antal sider | 12 |
ISSN | 0002-9939 |
DOI | |
Status | Udgivet - jun. 2011 |
Emneord
- Det Natur- og Biovidenskabelige Fakultet
- Det tidligere LIFE