A generalized spectral radius formula and Olsen's question

Terry Loring, Tatiana Shulman

2 Citationer (Scopus)

Abstract

Let A be a C⁎C⁎-algebra and I be a closed ideal in A. For x∈Ax∈A, its image in A/IA/I is denoted by x˙, and its spectral radius is denoted by r(x)r(x). We prove that max{r(x),‖x˙‖}=inf‖(1+i)−1x(1+i)‖ (where the infimum is taken over all i∈Ii∈I such that 1+i1+i is invertible), which generalizes the spectral radius formula of Murphy and West. Moreover if r(x)<‖x˙‖ then the infimum is attained. A similar result is proved for a commuting family of elements of a C⁎C⁎-algebra. Using this we give a partial answer to an open question of C. Olsen: if p is a polynomial then for “almost every” operator T∈B(H)T∈B(H) there is a compact perturbation T+KT+K of T such that ‖p(T+K)‖=‖p(T)e‖‖p(T+K)‖=‖p(T)‖e.
OriginalsprogEngelsk
TidsskriftJournal of Functional Analysis
Vol/bind262
Udgave nummer2
Sider (fra-til)719-731
ISSN0022-1236
DOI
StatusUdgivet - 15 jan. 2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'A generalized spectral radius formula and Olsen's question'. Sammen danner de et unikt fingeraftryk.

Citationsformater