A 2-basic set for the alternating group

O. Brunat, Jean-Baptiste Bernard Gramain

2 Citationer (Scopus)

Abstract

In this note, we construct a 2-basic set of the alternating group Un. To do this, we construct a 2-basic set of the symmetric group G with an additional property, such that its restriction to Un is a 2-basic set. We adapt here a method developed by Brunat and Gramain (J. Reine Angew. Math., to appear) for the case when the characteristic is odd. One of the main tools is the generalized perfect isometries defined by Külshammer et al. (Invent. Math. 151, 513-552, (2003)).

OriginalsprogEngelsk
TidsskriftArchiv der Mathematik
Vol/bind94
Sider (fra-til)301-309
ISSN0003-889X
StatusUdgivet - apr. 2010

Fingeraftryk

Dyk ned i forskningsemnerne om 'A 2-basic set for the alternating group'. Sammen danner de et unikt fingeraftryk.

Citationsformater